1.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + x \frac{\mathrm{d}y}{\mathrm{d}x} = 2\cos x$$

(a) Find $\frac{d^3y}{dx^3}$ in terms of x, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

At x = 0, y = 1 and $\frac{dy}{dx} = 3$

(b) Find the value of $\frac{d^3y}{dx^3}$ at x = 0

(c) Express y as a series in ascending powers of x, up to and including the term in x^3 .

(3)

(1)

Leave blank

- 2. (a) Sketch, on the same axes,
 - $(i) \quad y = |2x 3|$
 - (ii) $y = 4 x^2$

(3)

(b) Find the set of values of x for which

$$4 - x^2 > \left| 2x - 3 \right|$$

(6)

Leave blank

3.

$$f(x) = \ln(1 + \sin kx)$$

where k is a constant, $x \in \mathbb{R}$ and $-\frac{\pi}{2} < kx < \frac{3\pi}{2}$

(a) Find f'(x)

(2)

(b) Show that $f''(x) = \frac{-k^2}{1 + \sin kx}$

(3)

(c) Find the Maclaurin series of f(x), in ascending powers of x, up to and including the term in x^3 .

(4)

4. Find the general solution of the differential equation	4.	Find the	general	solution	of the	differential	equation
--	----	----------	---------	----------	--------	--------------	----------

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + (1 + x\cot x)y = \sin x, \qquad 0 < x < \pi$$

giving your answer in the form $y = f(x)$.	(9

10

Leave
blank

5. (a) Express $\frac{2}{r(r+1)(r+2)}$ in partial fractions.

(3)

(b) Using your answer to part (a) and the method of differences, show that

$$\sum_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{n(n+3)}{2(n+1)(n+2)}$$
(4)

—
—

6.	Solve the equation $z^5 = -16\sqrt{3} + 16i$	
	giving your answers in the form $r(\cos \theta + i \sin \theta)$, where $r > 0$ and $-\pi < \theta < \pi$.	(8)

7. (a) Find the value of the constant λ for which $y = \lambda x e^{2x}$ is a particular integral of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4y = 6\mathrm{e}^{2x}$$

(4)

(b) Hence, or otherwise, find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4y = 6\mathrm{e}^{2x}$$

(3)

Leave blank

- **8.** A complex number z is represented by the point P on an Argand diagram.
 - (a) Given that |z| = 1, sketch the locus of P.

(1)

The transformation T from the z-plane to the w-plane is given by

$$w = \frac{z + 7i}{z - 2i}$$

(b) Show that T maps |z| = 1 onto a circle in the w-plane.

(5)

(c) Show that this circle has its centre at w = -5 and find its radius.

(2)

9.

Figure 1

Figure 1 shows a sketch of the curves given by the polar equations

$$r = 1$$
 and $r = 2 - 2 \sin \theta$

(a) Find the coordinates of the points where the curves intersect.

(3)

Leave blank

The region S, between the curves, for which r < 1 and for which $r < 2 - 2 \sin \theta$, is shown shaded in Figure 1.

(b) Find, by integration, the area of the shaded region S, giving your answer in the form $a\pi + b\sqrt{3}$, where a and b are rational numbers.

(8)

		_